
Zerocash
Decentralized Anonymous Payments from Bitcoin

Oakland 2014
Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran

Tromer, Madars Virza

Presented by Gengmo Qi and Tianpeng Zhang
9th/Nov/2017

Agenda

• Background

• 3 initial attempts to construct a basic anonymous e-cash
• 3 attempts to extend its functionalities

• What’s happening now?

Bitcoin’s privacy problem

• Recall: How does Bitcoin prevent double-spending?
• Solution: broadcast every transaction into a public ledger (blockchain)

The cost: privacy.
• Purchase history (timing, amounts, merchant) seen by friends etc.
• Account balance revealed in every transaction.
• Merchant’s cash flow exposed to competitors.

Motivation

Bitcoin’s privacy problem

• Pseudonymous, but:
– Most users use a single or few addresses
– Transaction graph can be analyzed.

• Also: threat to the currency’s fungibility.

• Centralized: reveal to the bank.
• Decentralized: reveal to everyone???!

Motivation

“a dollar is a dollar, regardless of its history”

• Trusted mix (but: operator can trace/steal)
• Zerocoin: decentralized mix service for Bitcoin

Limitations:
– Performance: 45 kB/spend, ~0.5 s to verify. (for 128-bit security)
– Single denomination (undivisible) ⇒ reveals amount
– Reveal payment destinations; no direct transfer
– Requires explicit “laundry” process.

• CoinJoin and others

• Goal: fully privacy-preserving
• Anyone can post a transaction to anyone else, while provably hiding the payment

(1) Sender (2)Receiver (3)Amount

Previous attempts at Bitcoin anonymity

Let’s try to design an anonymous coin from scratch

• Coin
Serial number

A365e7006565f14342df9096b46cc7f1d2b9949367180fdd8de4090eee30bfdc

• Minting
• I hereby consume 1 BTC to create value-1 coin with serial number sn

• Spending
• Consume the coin with serial number sn

sn

• Minting:
• Spending:

Attempt #1: plain serial numbers

sn

Serial Number

sn1

sn2

sn3

sn4

I hereby spend 1 BTC to create value-1 coin sn

I am using up a coin with unique sn

sn5

……

On public chain

Legend:

• Minting:
• Spending:

Attempt #1: plain serial numbers

sn

Serial Number

sn1

sn2

sn3

sn4

I hereby spend 1 BTC to create value-1 coin sn

I am using up a coin with unique sn

sn5

……

Prevents double spending? ✅
Prevents false spending? ❌
Mint & Spend unlinkable? ❌

On public chain

Legend:

• Minting:

Attempt #2: committed serial numbers

I hereby spend 1 BTC to create value-1 coin cm

cm
Coin Commitment

commit

sn
Serial Number

Commitment
Randomness

cm1

cm2

cm3

cm4

cm5

……

[Sander Ta-Shma 1999]

r
On public chain

Legend:

In private wallet

• Minting:
• Spending:

Attempt #2: committed serial numbers

I hereby spend 1 BTC to create value-1 coin cm

I am using up a coin with cm,
and here are its corresponding sn and r

cm
Coin Commitment

commit

sn
Serial Number

r
Commitment
Randomness

cm1

cm2

cm3

cm4

cm5

……

On public chain

Legend:

In private wallet

(sn,r)

[Sander Ta-Shma 1999]

• Minting:
• Spending:

Attempt #2: committed serial numbers

I hereby spend 1 BTC to create value-1 coin cm

I am using up a coin with cm,
and here are its corresponding sn and r

cm
Coin Commitment

commit

sn
Serial Number

r
Commitment
Randomness

cm1

cm2

cm3

cm4

cm5

……

On public chain

Legend:

In private wallet

Prevents double spending? ✅
Prevents false spending? ✅
Mint & Spend unlinkable? ❌

(sn,r)

[Sander Ta-Shma 1999]

• Minting:
• Spending:

Attempt #3: Zero Knowledge Proof of Commitment

I hereby spend 1 BTC to create value-1 coin cm

cm
Coin Commitment

commit

sn
Serial Number

r
Commitment
Randomness

cm1

cm2

cm3

cm4

cm5

……

CMList

On public chain

Legend:

In private wallet

Prove to be known

(sn,π)
I am using up a coin with unique sn,

I know r such that (1)a cm is in ‘list of prior commitments’
(2)cm = COMM(sn,r)

• Minting:
• Spending:

Attempt #3: Zero Knowledge Proof of Commitment

I hereby spend 1 BTC to create value-1 coin cm

cm
Coin Commitment

commit

sn
Serial Number

r
Commitment
Randomness

cm1

cm2

cm3

cm4

cm5

……

CMList

On public chain

Legend:

In private wallet

Prove to be known

I am using up a coin with unique sn,
I know r such that (1)a cm is in ‘list of prior commitments’

(2)cm = COMM(sn,r)
(sn,π)

Prevents double spending? ✅
Prevents false spending? ✅
Mint & Spend unlinkable? ✅

• Minting:
• Spending:

Attempt #3: Zero Knowledge Proof of Commitment_v2

I hereby spend 1 BTC to create value-1 coin cm

cm
Coin Commitment

commit

sn
Serial Number

r
Commitment
Randomness

On public chain

Legend:

In private wallet

Prove to be known

(sn,π)
I am using up a coin with unique sn,

I know r such that (1)a cm is in tree with rt
(2)cm = COMM(sn,r)

Prevents double spending? ✅
Prevents false spending? ✅
Mint & Spend unlinkable? ✅

• Intuition: “virtual accountant/notary/witness” using cryptographic proofs.

• Desired proof properties:
• zero-knowledge
• Succinct
• Non-interactive
• ARguments of Knowledge

In proofs we trust

I am using up a coin with unique sn,
I know r such that (1)a cm is in tree with rt

(2)cm = COMM(sn,r)

zk-SNARKs(blackbox)

• zero-knowledge, Succinct, Non-interactive ARguments
of Knowledge

“API”:
Setup(stmt)
π ← Prove(input)
Verify(π)

→ libsnark

Quick recap before we proceed

In our best attempt so far:
• (i)How did we create new coins? How to spend them?

(1)Mint
Mint(cm)

(2)Spend
Spend(sn,π)

cm
Coin Commitment

commit

sn
Serial Number

Commitment
Randomness

r

Quick recap before we proceed

In our best attempt so far:
• (ii)Security:
How to prevent double spending? False spending?

(1)Double spending:
Serial Number sn

(2)False spending:
Knowing my cm, can’t derive sn and r

Quick recap before we proceed

In our best attempt so far:
• (iii)How privacy is protected?

• Unlink Spend and Mint.
•Whenever I see a Spend transaction, I don’t know which

previous Mint transaction it corresponds to

Quick recap before we proceed

In our best attempt so far:
• (iv)What is zk-SNARK trying to convey?

• I know a secret randomness r such that (won’t tell you the value of r)

• (1) a cm is in tree with rt
it induces a commitment cm that belongs to the collection of all commitments that appear
on the chain so far. (It is one of them, but I won’t tell you which one is it)

• (2) cm = COMM(sn,r)
Moreover, the serial number sn I reveal, and the secret randomness r I am not telling you,
give rise to that particular coin commitment cm.

Spend(sn,π)

• Minting:

Attempt #4: variable denomination
I hereby spend v BTC to create value-1 coin cm ,

And here is k, s to prove consistency

cm
Coin Commitment

commit

sn
Serial Number

r

commit

v
value

s

k
On public chain

Legend:

In private wallet

Mint(cm,v,k,s)

• Minting:

• Spending:

Attempt #4: variable denomination
I hereby spend v BTC to create value-1 coin cm ,

And here is k, s to prove consistency
I am using up a coin with value v (unique) sn,
I know some secret randomness r, s such that
(1)a cm is in the collection of all previous commitments
(2)cm = COMM(v,k,s) && k = COMM(sn,r)

cm
Coin Commitment

commit

sn
Serial Number

r

commit

v
value

s

k
On public chain

Legend:

In private wallet

Prove to be known

Mint(cm,v,k,s)

Spend(sn, π,v)

Prevents double spending? ✅
Prevents false spending? ✅
Mint & Spend unlinkable? ❓

Mint & Spend unlinkable?

existence
well-formed

Attempt #5: anonymous sender address

On public chain

Legend:

In private wallet

cm
Coin Commitment

commit

αpk
Public address

r

commit

v
value

s

ρ

PseudoRandom
Function

Serial number randomness

αsk
Secret key

sn
Serial number

I hereby spend v BTC to create value-1 coin cm ,
And here is k, s to prove consistency

• Minting: Mint(cm,v,k,s)

Spend(sn, π,v)

k

Attempt #5: anonymous sender address

On public chain

Legend:

In private wallet

cm
Coin Commitment

commit

αpk
Public address

r

commit

v
value

s

ρ

PseudoRandom
Function

Serial number randomness

αsk
Secret key

sn
Serial number

I hereby spend v BTC to create value-1 coin cm ,
And here is k, s to prove consistency

• Minting: Mint(cm,v,k,s)

Spend(sn, π,v)

k

cm
Coin Commitment

commit

αpk
Public address

r

commit

v
value

s

ρ

PseudoRandom
Function

Serial number randomness

αsk
Secret key

sn
Serial number

I hereby spend v BTC to create value-1 coin cm ,
And here is k, s to prove consistency

• Minting:

• Spending:

Mint(cm,v,k,s)

Spend(sn, π,v)

k

I am using up a coin with value v (unique) sn,
I know secret(k, r, s, ρ, αpk,αsk)that match secret

cm:

On public chain

Legend:

In private wallet

Prove to be known

Attempt #5: anonymous sender address

Attempt #5: anonymous sender address

On public chain

Legend:

I am using up a coin with value v (unique) sn,
I know secret(k, r, s, ρ, αpk,αsk)that match secret
cm:
(1)a cm is in the collection of all previous commitments
(2)cm = COMM(v,k,s) && k = COMM(αpk,ρ,r)
(3)sn = PRF(ρ,αsk) && αpk=PRF(0,αsk)

In private wallet

Prove to be known

I hereby spend v BTC to create value-1 coin cm ,
And here is k, s to prove consistency

• Minting:

• Spending:
Spend(sn, π,v)

Mint(cm,v,k,s)

existence
well-formed

possession

Attempt #5: anonymous sender address

I am using up a coin with value v (unique) sn,
I know secret(k, r, s, ρ, αpk,αsk)that match secret
cm:
(1)a cm is in the collection of all previous commitments
(2)cm = COMM(v,k,s) && k = COMM(αpk,ρ,r)
(3)sn = PRF(ρ,αsk) && αpk=PRF(0,αsk)

I hereby spend v BTC to create value-1 coin cm ,
And here is k, s to prove consistency

• Minting:

• Spending:
Spend(sn, π,v)

Mint(cm,v,k,s)

existence
well-formed

possession

Prevents double spending? ✅
Prevents false spending? ✅
Variable denomination? ✅
Mint & Spend unlinkable? ❓
Other problems?

Attempt #6: sending direct payments

On public chain

Legend:

In private wallet

cm
Coin Commitment

commit

αpk
Public address

r

commit

v
value

s

ρ

PseudoRandom
Function

Serial number randomness

αsk
Secret key

sn
Serial number

I hereby spend v BTC to create value-1 coin cm ,
And here is k, s to prove consistency

• Minting: Mint(cm,v,k,s)

k

I hereby spend v BTC to create value-1 coin cm ,
And here is k, s to prove consistency

• Minting:

• Spending:

Mint(cm,v,k,s)
Spend(snA,cmB,π)

Burn coin snA & create new coin with commitment cmB

Attempt #6: sending direct payments

I hereby spend v BTC to create value-1 coin cm ,
And here is k, s to prove consistency

• Minting:

• Spending:

Mint(cm,v,k,s)
Spend(snA,cmB,π)

Burn coin snA & create new coin with commitment cmB

Attempt #6: sending direct payments

• Minting:

• Spending:

I hereby spend v BTC to create value-1 coin cm ,
And here is k, s to prove consistency

Mint(cm,v,k,s)
Spend(snA,cmB,π)

Burn coin snA & create new coin with commitment cmB

I know secret(cmA, vA, kA, rA, sA, ρA, αpkA,αskA)
(1)a cmA is in the collection of all previous commitments
(2)cmA = COMM(vA, kA, sA) && kA = COMM(αpkA,ρA,rA)
(3)snA = PRF(ρA,αskA) && αpkA=PRF(0,αskA)
(4)cmB = COMM(vB, kB, sB) && kB = COMM(αpkB,ρB,rB)
(5)vA=vB

Attempt #6: sending direct payments

existence
well-formed

possession
well-formed
same value

(cmB, vB, kB, rB, sB, ρB, αpkB)

• Minting:

• Spending:

I hereby spend v BTC to create value-1 coin cm ,
And here is k, s to prove consistency

Mint(cm,v,k,s)
Spend(snA,cmB,π)

Burn coin snA & create new coin with commitment cmB

I know secret(cmA, vA, kA, rA, sA, ρA, αpkA,αskA)
(1)a cmA is in the collection of all previous commitments
(2)cmA = COMM(vA, kA, sA) && kA = COMM(αpkA,ρA,rA)
(3)snA = PRF(ρA,αskA) && αpkA=PRF(0,αskA)
(4)cmB = COMM(vB, kB, sB) && kB = COMM(αpkB,ρB,rB)
(5)vA=vB

Attempt #6: sending direct payments

existence
well-formed

possession
well-formed
same value

Prevents double spending? ✅
Prevents false spending? ✅
Variable denomination? ✅
Mint & Spend unlinkable? ✅

(cmB, vB, kB, rB, sB, ρB, αpkB)

Known to receiver

Sender send coin secrets(𝑣,𝜌,r,s) to receiver:
• (1) out of band
• (2) encrypted to receiver’s public key αpk

Attempt #6: sending direct payments

Legend:

cm
Coin Commitment

commit

αpk
Public address

r

commit

v
value

s

k

ρ

PseudoRandom
Function

Serial number randomness

αsk
Private key

sn
Serial number

Pouring Zerocash coins

Pour

old Zerocash coin

old Zerocash coin

sn1

sn2

v1 v2 dest1 dest2

sn1 sn2 cm1 cm2 proof

new Zerocash coin

new Zerocash coin

V1 → dest1

V2 → dest2

Simplified

(1)The old coins are minted at some point in the past
(2)The output coins are well-formed

(3)value of old coins = v1+v2,,balance preserved

What does a transaction look like?
root 1c4ac4a110e863deeca050dc5e5153f2b7010af9

sn_1 a365e7006565f14342df9096b46cc7f1d2b9949367180fdd8de4090eee30bfdc

sn_2 6937031dce13facdebe79e8e2712ffad2e980c911e4cec8ca9b25fc88df73b52

cm_1 a4d015440f9cfae0c3ca3a38cf04058262d74b60cb14ecd6063e047694580103

cm_2 2ca1f833b63ac827ba6ae69b53edc855e66e2c2d0a24f8ed5b04fa50d42dc772

pubkeyHash
info

8f9a43f0fe28bef052ec209724bb0e502ffb5427

SigPK 2dd489d97daa8ceb006cb6049e1699b16a6d108d43

Sig f1d2d2f924e986ac86fdf7b36c94bcdf32beec15a38359c82f32dbb3342cb4bedcb78ce116bac69e

MAC_1 b8a5917eca1587a970bc9e3ec5e395240ceb1ef700276ec0fa92d1835cb7f629

MAC_2 ade6218b3a17d609936ec6894b7b2bb446f12698d4bcafa85fcbf39fb546603a

ciphertext_1

048070fe125bdaf93ae6a7c08b65adbb2a438468d7243c74e80abc5b74dfe3524a987a2e3ed075d54ae7a53866973eaa5070c4e0895
4ff5d80caae214ce572f42dc6676f0e59d5b1ed68ad33b0c73cf9eac671d8f0126d86b667b319d255d7002d0a02d82efc47fd8fd648
057fa823a25dd3f52e86ed65ce229db56816e646967baf4d2303af7fe09d24b8e30277336cb7d8c81d3c786f1547fe0d00c029b63bd
9272aad87b3f1a2b667fa575e

ciphertext_2

0493110814319b0b5cabb9a9225062354987c8b8f604d96985ca52c71a77055b4979a50099cefc5a359bdf0411983388fa5de840a0d
64816f1d9f38641d217986af98176f420caf19a2dc18c79abcf14b9d78624e80ac272063e6b6f78bc42c6ee01edfbcddbeb60eba586
eaecd6cb017069c8be2ebe8ae8a2fa5e0f6780a4e2466d72bc3243e873820b2d2e4b954e9216b566c140de79351abf47254d122a35f
17f840156bd7b1feb942729dc

zkSNARKproof

a4c3cad6e02eec51dc8a37ebc51885cf86c5da04bb1c1c0bf3ed97b778277fb8adceb240c40a0cc3f2854ce3df1eafdcefccc532bc5afaefefe9d3975726f2ca829228
6ca8dd4f8da21b3f98c61fac2a13f0b82544855b1c4ce7a0c9e57592ee1d233d43a2e76b9bdeb5a365947896f117002b095f7058bdf611e20b6c2087618c58208e3
658cfcc00846413f8f355139d0180ac11182095cdee6d9432287699e76ed7832a5fc5dc30874ff0982d9658b8e7c51523e0fa1a5b649e3df2c9ff58dc05dac7563741
298025f806dfbe9cfe5c8c40d1bf4e87dacb11467b9e6154fb9623d3fba9e7c8ad17f08b17992715dfd431c9451e0b59d7dc506dad84aef98475d4be530eb501925
dfd22981a2970a3799523b99a98e50d00eaab5306c10be5

Timeline of Zcash

Zcash as of this morning

What is happening?

*“We have designed an elliptic curve called
Jubjub
which is efficient to perform operations on
inside of zk-SNARK circuits..”
---Sep 13,2017

*Cultivating Sapling: Faster zk-SNARKs. (n.d.). Retrieved November 07, 2017, from https://z.cash/blog/cultivating-sapling-faster-zksnarks.html

Criticism: memory usage

• Recall zk-proof “API”:
Setup(stmt)
π ← Prove(input)

Verify(π)

• Who will do the parameter setup for ZCash?
• How can we trust these people?

Criticism: ‘Ceremony’

FYI: Details in trusted setup

•Setup generate fixed keys used by all provers and verifiers.
• If Setup is compromised at the dawn of the currency,

attacker could later forge coins.
• Run once. Once done and intermediate results erased, no

further trust
•Anonymity is unaffected by corrupted setup
• Can be done by an MPC protocol, secure if even one of the

participants is honest.
[Ben-Sasson Chiesa Green Tromer Virza 2015]

Simple Parameter Generation

• Generate (Public key/ Private key) pair
• Keep Public key for future use
• Delete Private key

Toxic Waste

Criticism: ‘Ceremony’

Multiparty Computation Protocol

• Generate shards of public key/private key
• (Pub_1,Pri_1), (Pub_2,Pri_2),…

• Combine Pub_1, Pub_2 … to be Public Key

• Delete ANYONE in Pri_1, Pri_2,…
Toxic Waste

Criticism: ‘Ceremony’

As soon as any one of the Witnesses
deleted their private key shard,
then the toxic waste could never be
created.

We only need ONE honest witness

Criticism: ‘Ceremony’

Criticism: ‘Ceremony’

Criticism: ‘Ceremony’

• 1. Maximum anonymity you can get

• 2. At a high-level, zk-SNARKs look intuitive

• 3. Under utilized

• 4. Further discussions

Takeaways

cm
Coin Commitment

commit

αpk
Public address

r

commit

v
value

s

ρ

PseudoRandom
Function

Serial number randomness

αsk
Secret key

sn
Serial number

k

Appendix 1:A concise view

cm
Coin Commitment

commit

αpk
Public address

r

commit

v
value

s

ρ

PseudoRandom
Function

Serial number
randomness

αsk
Secret key

sn
Serial number

k
PseudoRandom
Function

αpk

AddressCoin

Public key

Appendix 2: Another view

Acknowledgements

• This paper presentation is part of COMP6111C:Blockchain and Cryptocurrency Technologies in
2017 Fall at HKUST, taught by Prof. Dimitris Papadopoulos
• The slides are prepared based on the sources listed below. The presenters would like to thank

the authors for making the information publicly available online.

• E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza. Zerocash: Decentralized anonymous payments from Bitcoin.
In IEEE Symposium on Security and Privacy, 2014

• E. Tromer. Information Security – Theory vs. Reality, 0368-4474-01, Winter 2015-2016, Lecture 12:Verified computation and its applications

• "Zerocash: improving Bitcoin using SNARKs", YouTube, 2014. [Online]. Available: https://www.youtube.com/watch?v=S6qOj9ap6RM.
[Accessed: 16- Nov- 2017].

• The slides have not been updated since then and some information may be outdated, if you
have any questions, please feel free to reach out to the original paper authors, or the
presenters gq35@cornell.edu, tzhang@g.harvard.edu

https://www.cse.ust.hk/~dipapado/
https://www.youtube.com/watch?v=S6qOj9ap6RM
mailto:gq35@cornell.edu
mailto:tzhang@g.harvard.edu

