Zerocash
Decentralized Anonymous Payments from Bitcoin

Oakland 2014
Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, lan Miers, Eran
Tromer, Madars Virza

Presented by Gengmo Qi and Tianpeng Zhang
9th/Nov/2017

* Background

* 3 initial attempts to construct a basic anonymous e-cash
3 attempts to extend its functionalities

* What'’s happening now?

Bitcoin’s privacy problem

* Recall: How does Bitcoin prevent double-spending?
* Solution: broadcast every transaction into a public ledger (blockchain)

The cost: privacy.

e Purchase history (timing, amounts, merchant) seen by friends etc.
e Account balance revealed in every transaction.

* Merchant’s cash flow exposed to competitors.

Bitcoin’s privacy problem

* Pseudonymous, but:
— Most users use a single or few addresses
— Transaction graph can be analyzed.

e Also: threat to the currency’s fungibility.

e Centralized: reveal to the bank.
e Decentralized: reveal to everyone???!

“a dollar is a dollar, regardless of its history”

Previous attempts at Bitcoin anonymity

* Trusted mix (but: operator can trace/steal)

e Zerocoin: decentralized mix service for Bitcoin
Limitations:
— Performance: 45 kB/spend, ~0.5 s to verify. (for 128-bit security)
— Single denomination (undivisible) = reveals amount
— Reveal payment destinations; no direct transfer
— Requires explicit “laundry” process.

e CoinJoin and others

e Goal: fully privacy-preserving

* Anyone can post a transaction to anyone else, while provably hiding the payment
(1) Sender (2)Receiver (3)Amount

Let’s try to design an anonymous coin from scratch

* Coin

Serial number

A365e7006565£14342df9096b46cc7£1d2b9949367180£dd8de4090eee30bfdc
* Minting

* | hereby consume 1 BTC to create value-1 coin with serial number sn
* Spending

* Consume the coin with serial number sn

Attempt #1: plain serial numbers

B\ Iidll:4l | hereby spend 1 BTC to create value-1 coin sn

* Spending: | am using up a coin with unique sn

sn2

sn3

sn4

| On public chain Serial Number

| m
3
0

Attempt #1: plain serial numbers

* Minting: | hereby spend 1 BTC to create value-1 coin sn
* Spending:
sn3
sn4

| On public chain Serial Number

| :
3
0

Prevents double spending? [V
Prevents false spending? X
Mint & Spend unlinkable? X

Attempt #2: committed serial numbers

[Sander Ta-Shma 1999]
B\ ILidI-4l | hereby spend 1 BTC to create value-1 coin cm

cm2

Coin Commitment
cmé

Legend: commit [«

On public chain T Commitrichy

Randomness

Q
' B
o

Serial Number

Attempt #2: committed serial numbers
[Sander Ta-Shma 1999]

B\ ILidI-4l | hereby spend 1 BTC to create value-1 coin cm
* Spending: | am using up a coin with cm,
sn,r) and here are its corresponding snand r

Coin Commitment

i cmé
| On public chain Commitment

Randomness

Q
| B
o

Serial Number

Attempt #2: committed serial numbers

[Sander Ta-Shma 1999]
B\ ILidI-4l | hereby spend 1 BTC to create value-1 coin cm

e Spending: I ary USing 1D A coin with cm,
sn,r) and here are its corresponding su and »
Coin Commitment
|
| On public chain Commitment i

| Randomness _
Serial Number Prevents double spending? [V
Prevents false spending?
Mint & Spend unlinkable? X

Attempt #3: Zero Knowledge Proof of Commitment

M\ Mald[)4l | hereby spend 1 BTC to create value-1 coin cm
* Spending: | am using up a coin with unique sn,
SIS | know rsuch that (1)a cmis in ‘list of prior commitments’

(2)em = COMM(sn, r

Coin Commitment

E Legend:

On public chain M

commit

Randomness

Prove to be known Serial Number

CMList

II

m2

cm3

cmé

Q
l B
o

Attempt #3: Zero Knowledge Proof of Commitment

M\ Mald[)4l | hereby spend 1 BTC to create value-1 coin cm
* Spending: | am using up a coin with unique sn,
SIS | know rsuch that (1)a cmis in ‘list of prior commitments’

(2)em = COMM(sn, r

Coin Commitment

E Legend:

On public chain CI:Iommitment

commit

Randomness

Prove to be known Serial Number Prevents double spending?

CMList

II

m2

cm3

cmé

Q
| B
o

Prevents false spending?
Mint & Spend unlinkable?

J <]

Attempt #3: Zero Knowledge Proof of Commitment_v2

B\l dlef-H0 | hereby spend 1 BTC to create value-1 coin cm (a) Merke tree over (cn,,cm,)
* Spending: | am using up a coin with unique sn, r;:
sn,) | know rsuch that (1)a cmis in tree with rt CRH
(2)cm A
CRH| [CRH
ALY
Coin Commitment CRH
: CRH CRH
| : Z X X
 Legend: commit crH| [crH] [crH] [crA

FP PP FPffd

. On pUblIC chain Commitment cm, cm, Cm, Cm, CM, CM, CM, CMg ..

Randomness

Prevents double spending?
Prevents false spending?
Mint & Spend unlinkable?

Prove to be known Serial Number

S88

In proofs we trust

* Intuition: “virtual accountant/notary/witness” using cryptographic proofs.

* Desired proof properties:

e zero-k | am using up a coin with unique sn,
.S | know r such that (1)a cmis in tree with rt
e N (2)em = COMM(sn, r

* AR K

zK-SNARKSs (blackbox)

* zero-knowledge, Succinct, Non-interactive ARguments
of Knowledge

“AP1”:
Setup(stmt)
m < Prove(input)
Verify(m)

- libsnark

Quick recap before we proceed

In our best attempt so far:

* (iljHow did we create new coins? How to spend them?

(1)Mint
Mint (cm)
(2)Spend
Spend(sn,)

Coin Commitment

commit

|

<«

Commitment
Randomness

Serial Number

Quick recap before we proceed

In our best attempt so far:
e (ii)Security:
How to prevent double spending? False spending?

(1)Double spending:
Serial Number sn
(2)False spending:
Knowing my cm, can’t derive sn and ¢

Quick recap before we proceed

In our best attempt so far:
e (iii)How privacy is protected?

* Unlink Spend and Mint.

* Whenever | see a Spend transaction, | don’t know which
previous Mint transaction it corresponds to

Quick recap before we proceed

In our best attempt so far:
* (iv)What is zk-SNARK trying to convey? spend(sn,)

* | know a secret randomness r such that (won’t tell you the value of r)

* (1) a cmis in tree with rt

it induces a commitment cm that belongs to the collection of all commitments that appear
on the chain so far. (It is one of them, but | won’t tell you which one is it)

*(2) cm = coMM(sn, r)

Moreover, the serial number sn | reveal, and the secret randomness r | am not telling you,
give rise to that particular coin commitment cm.

Attempt #4: variable denomination

M\ iidla:H0 | hereby spend v BTC to create value-1 coin cm,

. _ Mint(cm,v,k,s)
And here is k, s to prove consistency

Coin Commitment

E Legend:

| 3 olic chai commit

N publiC Chaln T H:
' comic }

value T

Serial Number

Attempt #4: variable denomination

M\ iidla:H0 | hereby spend v BTC to create value-1 coin cm, Mint (cm@k, S)
And here is k, s to prove consistency

| am using up a coin with value v (unique) sn, Mint & Spend unlinkable?

| know some secret randomness r, s such that Spend(sn, n@

SUSEDIIN (1)a cmis in the collection of all previous commitments

IR dn - (2)cm = COMM(v,k,s) && k = COMM(sn,r

Coin Commitment

* Spending:

E Legend:

: : commit
On public chain T ”

Z S

value Prevents double spending?
Prevents false spending?
Serial Number Mint & Spend unlinkable? ?

Prove to be known

Attempt #5: anonymous sender address

M\ iidla:H0 | hereby spend v BTC to create value-1 coin cm,
And here is k, s to prove consistency

Mint(cm,v,k,s)

Spend(sn, m,V)

Serial number
cm T

Coin Commitment PseudoRandom

Legend: , Function

On public chain commit i
r n
commit J* Secret key |

value T

Public address « Serial number randomness |

Attempt #5: anonymous sender address

M\ iidla:H0 | hereby spend v BTC to create value-1 coin cm,
And here is k, s to prove consistency

Mint(cm,v,k,s)

Spend(sn, m,V)

Serial number
cm T

Coin Commitment PseudoRandom

Legend: , Function

On public chain commit i
r n
commit J* Secret key |

value T

Public address « Serial number randomness |

Attempt #5: anonymous sender address

M\ iidla:H0 | hereby spend v BTC to create value-1 coin cm,
And here is k, s to prove consistency
. am using up a coin with value v (unique) sn,
* Spending: | know secret(k, r, s, p, Qpx, sk) that match secret

Mint(cm,v,k,s)

Spend(sn, m,V)

Serial number

F Coin Commitment PseudoRandom

i _ _ commit

Prove to be known
: Serial number randomness
IC @AAE@SS T T T S T

Attempt #5: anonymous sender address

* Minting: FaEEeise=le ¥BTC to create valu.e-l coin cm, Mint (cm,v,k,s)
And here is k, s to prove consistency

« Spending: | am using up a coin with value v (unique) sn,
| | know secret(k, r, s, p, Qpx, &gy,) that match secret Spend(sn, m,V)

existence [oue - . : .
well-formed (1)a cmis in the collection of all previous commitments
(2)cm = COMM(v,k,s) && k=COMM(Qpx, P, L)

SSstaadlll (3)sn = PRF(p, a.;) && Q,,=PRF(0,d;)
| . o
, Legend: Coin Commitment PseudoRandom

| On public chain 1 E Function
i commlit

sn
Serial number

— oy a
commit E Secret key

| Prove to be known value
| Serial number randomness
| ublicaddress T T AR

Attempt #5: anonymous sender address

M\ iidla:H0 | hereby spend v BTC to create value-1 coin cm,
And here is k, s to prove consistency

| am using up a coin with value v (unique) sn,
| know secret(k, r, s, p, Qpx, &5,) that match secret Spend(sn, n@
cm:

(1)a cmis in the collection of all previous commitments
: (2)em = COMM(v, k,s) && k=COMM(Q;,Q, L)
Sl (3)sn = PRF(p, ai) && &, =PRF(0,;)

cm
Coin Commitment PseudoRandom

- 1 Function
commit

e Spending:

existence
well-formed

sn
Serial number

Prevents double spending?
Prevents false spending?
Variable denomination? f i« B

Mint & Spend unlinkable? commit <—I:I I%

Other problems? value
Serial number randomnesé
ublicaddress T T T R T

~S88

Attempt #6: sending direct payments

M\ iidla:H0 | hereby spend v BTC to create value-1 coin cm,
And here is k, s to prove consistency

Mint(cm,v,k,s)

Serial number
cm T

Coin Commitment PseudoRandom

Legend: , Function

On public chain commit i
r n
commit J* Secret key |

value T

Public address « Serial number randomness |

Attempt #6: sending direct payments

M\ iidla:H0 | hereby spend v BTC to create value-1 coin cm,
And here is k, s to prove consistency

Mint(cm,v,k,s)
Spend(sn?,cm?, 1)

e Spending:

Burn coin sn? & create new coin with commitment cm?8

sn
Serial number
cm
Coin Commitment PseudoRandom
- P Function
commit S T
T k — Ok ‘mi
v commit [r ’ Secret key
value |
o P 5
pk . :
Serial number randomness

Public address T T S

Attempt #6: sending direct payments

M\ iidla:H0 | hereby spend v BTC to create value-1 coin cm,
And here is k, s to prove consistency

Mint(cm,v,k,s)
Spend(sn?,cm?, 1)

e Spending:

Burn coin sn? & create new coin with commitment cm?8

Coin Address
cm sn Public key
Coin Commitment Serial number Qpy
- —] s Secret key I
commit PseudoRandom L [4 PseudoRandom
i k Function Bk Function
value _
oy p | Serial number
Public address randomness

Attempt #6: sending direct payments

M\ iidla:H0 | hereby spend v BTC to create value-1 coin cm, Mint (cm,v,k,s)
. . 4 4 4
And here is k, s to prove consistency Spend (sn?, cm®, 1)

Burn coin sn? & create new coin with commitment cm®
| know secret(cm?, vA, k4, r?, s%, p, o, * ot *) (cmB, vB, kB, 1B, sB, pB, o, B)
NN (1)a cm? is in the collection of all previous commitments
WEIB el (2)cm® = COMM (VA kA, sA) && kA= COMM (a2, pA,rh)
YTl (3)sn® = PRF(p?, as,?) && a,*=PRF (0, 0 P)
WAIR I el (4)cm® = COMM (VB kB, sB) && kP =COMM (o2, pB,rB)
same value RE)\iad'A

e Spending:

Coin Address
cm . Public key
Coin Conmitment Serial number i

. Secret key
PseudoRandom PseudoRandom
Function Function

u Serial number
randomness

Public address

Attempt #6: sending direct payments

M\ iidla:H0 | hereby spend v BTC to create value-1 coin cm, Mint (cm,v,k,s)
. . 14 4 4
And here is k, s to prove consistency Spend (sn?, cm®, 1)

Burn coin sn? & create new coin with commitment cm?®
| know secret(cm®, vA, kA, r4, s, pA, ap® g *) (cmB, vB, KB, r8, sB, pB, o, B)
NN (1)a cm? is in the collection of all previous commitments
WE BRIl (2)cm® = COMM (VA kA, sA) && kA= COMM(ay,.*, pA,rh)
YTl (3)sn® = PRF(p?, as,?) && a,*=PRF (0, 0 P)
WAIR I el (4)cm® = COMM (VB kB, sB) && kP =COMM (o2, pB,rB)
same value RE)\iad'A

e Spending:

- Coin Address
Prevents double spending? .
. — — . Public key
Prevents false spending? Coin Copmrtment Seria pumber o

. Secret key
PseudoRandom PseudoRandom
Function

Variable denomination?
Mint & Spend unlinkable?

Function

u Serial number
randomness

Public address

Attempt #6: sending direct payments

Sender send coin secrets(v,p,r,s) to receiver:
* (1) out of band

* (2) encrypted to receiver’s public key o

Serial number

T

PseudoRandom
__ Coin Commitment Function
Legend: . f
a — comnit —
[noun t ecever [JANN :
| Private key
comic |- [N

e ¢ I

. Serial number randomness
Public address

Pouring Zerocash coins

Simplified

Vl — destl
new Zerocash coin

sn;
old Zerocash coin

|

V, — destz

Sn; :
new Zerocash coin

old Zerocash coin

R

[snll snzl cmll cmzl proof

(1)The old coins are minted at some point in the past

(2)The output coins are well-formed
(3)value of old coins = v;+v, ,balance preserved

What does a transaction look like?

root lcd4acd4allO0e863deecal050dc5e5153f2b7010af9

sn_1 2365¢7006565£14342df9096b46ccT£1d209949367180fdd8de4090eee30bfde

sn_2 6937031dcel3facdebe79e8e2712ffad2e980c911e4cec8cadb25fc88dE73b52

fi’zl;:eyHaSh 8£9a43f0fe28bef052ec209724bb0e502ffb5427

SigPK 2dd489d97daa8ceb006cb6049e1699b16a6d108d43

Sig £1d2d2£924e986ac86fdf7b36c94bcdf32beec] 5a38359c82£32dbb3342chibedch78cellbbact9e
MAC 1 b8a5917ecal587a970bcYe3ec5e395240ceblef700276ec0fad2d1835ch7£629

MAC 2 ade6218b3a17d609936ec6894b7b2bb446£12698d4bcafa85fchbf39fb546603a

ciphertext 1

048070fel25bdaf93ae6a7c08b65adbb2a438468d7243c74e80abcb5b74dfe3524a987a2e3ed075d54ae7a53866973eaa5070c4e0895
4ff5d80caae214ce572f42dc6676£0e59d5bled68ad33b0c73cf9eac671d8f0126d86b6670319d255d7002d0a02d82efcd7fd8£d648
057fa823a25dd3f52e86ed65ce229db56816e646967bafdd2303af7fe09d24b8e30277336¢cb7d8c81d3¢c786£1547fe0d00c029b63bd
9272aad87b3fla2b667fa575e

ciphertext 2

0493110814319b0b5cabb%9a9225062354987¢c8b8f604d96985¢ca52c71a77055b4979a50099cefc5a3590df0411983388fa5de840a0d
64816£1d9f38641d217986af98176f420cafl9a2dcl8c79%9abcfl14b9d78624e80ac272063e06b6f78bcd2cbeelledfbcddbeb60eba586
eaecd6cb017069c8be2ebe8aeB8a2fab5e0f6780a4e2466d72bc3243e8738200b2d2e4b954e9216b566c140de79351abf47254d122a35f
17£840156bd7blfeb942729dc

zkSNARKproof

dfd22981a2970a3799523b99a98e50d00eaab5306c10be5

Timeline of Zcash

2013 IEEE Symposium on Security and Privacy

Zerocoin: Anonymous Distributed E-Cash from Bitcoin

Ian Miers, Christina Garman, Matthew Green, Aviel D. Rubin
The Johns Hopkins University Department of Computer Science, Baltimore, USA
{imiers, cgarman, mgreen, rubin}@cs.jhu.edu

2014 IEEE Symposium on Security and Privacy
Zerocash: Decentralized Anonymous Payments from Bitcoin

Eli Ben-Sasson*, Alessandro Chiesaf, Christina Garman?, Matthew Green?, Ian Mierst, Eran Tromer$, Madars Virza'
*Technion, eli@cs.technion.ac.il
TMIT, {alexch, madars}@mit.edu
tJohns Hopkins University, {cgarman, imiers, mgreen}@cs.jhu.edu
8Tel Aviv Universitv. t romer@cs.tau.ac.il

Zcash begins

Zooko Wilcox

The Zcash blockchain is live! We released the genesis block this morning, and people all around our planet have

begun mining and transacting on it.

Zcash as of this morning
| uso- |

Market Cap

All ~

i

10

1

12

13

14

15

Coins ~
Name
Bitcoin

¢ Ethereum

Tokens ~

© Bitcoin Cash

¢ Ripple
Litecoin

= Dash

™ NEO

® Monero

9

NEM

¢ Ethereum Classic

2 I0TA
Qtum
OmiseGO

8 Lisk
% Cardano

@ Zcash

Symbol

BTC

ETH

BCH

XRP

LTC

DASH

NEO

XMR

XEM

ETC

MIOTA

QTUM

OMG

LSK

ADA

ZEC

$122,574,167,168
$29,463,011,035
$10,676,720,231
$8,360,226,531
$3,335,373,595
$2,401,876,167
$2,013,882,000
$1,720,036,265
$1,705,464,000
$1,356,419,613
$1,308,091,424
$881,557,511
$794,299,223
$682,120,729
$648,324,548

$639,994,999

Price

$7352.50

$308.16

$636.56

$0.216971

$62.07

$312.87

$30.98

$112.22

$0.189496

$13.95

$0.470616

$11.97

$7.78

$5.95

$0.025006

$248.21

Circulating Supply

16,671,087

95,608,529

16,772,475

38,531,538,922 *

53,738,882

7,677,037

65,000,000 *

15,327,496

8,999,999,999 *

97,257,388

2,779,530,283 *

73,647,244

102,042,552 *

114,622,875 *

25,927,070,538 *

2,578,431

Volume (24h)
$4,614,130,000
$973,376,000
$890,417,000
$160,370,000
$337,594,000
$103,209,000
$122,593,000
$81,072,200
$6,447,280
$127,993,000
$44,598,200
$196,600,000
$85,668,400
$33,198,300
$6,346,360

$59,987,700

% 1h

-1.47%

-0.55%

2.28%

-0.02%

-0.65%

-0.99%

0.74%

-1.62%

-2.27%

-0.48%

-0.37%

0.64%

1.63%

-1.12%

-0.40%

-1.24%

« Back to Top 100

% 24h

2.25%

4.55%

2.57%

3.63%

0.87%

7.14%

18.28%

12.08%

5.25%

-1.38%

21.91%

7.76%

22.51%

16.16%

13.47%

3.11%

% 7d

8.51%

5.43%

21.76%

11.86%

16.13%

15.89%

18.80%

32.99%

11.26%

35.04%

31.19%

19.32%

26.47%

32.75%

3.13%

11.98%

What is happening?

E\

O Progress...

Downloading proving key
’ |

p—

Cancel

L S S S S SN

Downloading proving key...

Criticism: memory usage

*“We have designed an elliptic curve called

Jubjub Sprout Sapling
which is efficient to perform operations on
inside of zk-SNARK circuits..” =
---Sep 13,2017 . _ ’ .
Proving time
(seconds)
0= “60 O
37
1.5GB 1.5GB
Memory/
RAM
usage

3GB 0 3GB

>3GB 40MB

*Cultivating Sapling: Faster zk-SNARKs. (n.d.). Retrieved November 07, 2017, from https://z.cash/blog/cultivating-sapling-faster-zksnarks.html

Criticism: ‘Ceremony’

* Recall zk-proof “API”:

m < Prove(input)

Verify(m)

* Who will do the parameter setup for ZCash?
* How can we trust these people?

FYI: Details in trusted setup

* Setup generate fixed keys used by all provers and verifiers.

|If Setup is compromised at the dawn of the currency,
attacker could later forge coins.

* Run once. Once done and intermediate results erased, no
further trust

* Anonymity is unaffected by corrupted setup

* Can be done by an MPC protocol, secure if even one of the

participants is honest.
[Ben-Sasson Chiesa Green Tromer Virza 2015]

Criticism: ‘Ceremony’

Simple Parameter Generation

* Generate (Public key) pair ©
» Keep Public key for future use .

Toxic Waste
. Delete

Criticism: ‘Ceremony’

Multiparty Computation Protocol

* Generate shards of public key/private key

. (Pub_l,, (Pub_2,,... ©

* Combine Pub_1, Pub_2 ... to be Public Key

Toxic Waste
e Delete ANYONE in

Criticism: ‘Ceremony’

As soon as any one of the Witnesses
deleted their private key shard,
then the toxic waste could never be
created.

Network B We only need ONE honest witness
Machines Al
Airgap Airgap
I I
Compute K{ - \)T - J
Machines __ N _
J ,

Player 1 Player 2 Player3 e Player N

Criticism: ‘Ceremony’

. . . Zcash's public parameters were generated using this protocol in a
The Crazy securlty Behlnd the Blrth Of ceremony that took place on October 21-23. The ceremony
anSh, the Inside S‘tory involved six participants, each in their own location, each with their

own hardware:

By Morgen E. Peck
Posted 2 Dec 2016 | 18:50 GMT 1. Andrew Miller

2. Peter Van Valkenburgh

3. John Dobbertin (pseudonym)
4. Zooko Wilcox

5. Derek Hinch

6. Peter Todd

Photo: Morgen Peck

Paranoia, the destroyer: Za Wilcox, brother of Zcash CEO Zooko Wilcox, sets about 2016/10/23 13:116:24
destroying a computer used to generate the cryptographic parameters needed to start
Zcash

ZCash: Orlando Station Report

Criticism: ‘Ceremony’

Improved zk-SNARK Multi-party
Computation Protocol

Sean Bowe, Ariel Gabizon and lan Miers

zk-SNARKs - the zero-knowledge proofs at the core of Zcash - require a parameter generation ceremony to take
place for every statement that you wish to create proofs about. Although privacy is protected by zk-SNARKs
unconditionally, if this ceremony is compromised it becomes possible to counterfeit Zcash. It is thus important for
us to ensure these parameters are created securely.

Last year, Zcash performed such a ceremony using a multi-party computation (MPC) protocol. These protocols
have the property that only one party needs to be uncompromised for the resulting parameters to be secure. In
other words, in order to compromise the ceremony, every participant needed to be compromised.

* 1. Maximum anonymity you can get

* 2. At a high-level, zk-SNARKs look intuitive

* 3. Under utilized

e 4. Further discussions

Appendix 1:A concise view

sn

Serial number
cm
Coin Cor?mitment PseudoRandom
- . Function
commit S
| k| U [
v commit [r Secret key
value
Upk P

public address <« Serial number randomness |

Appendix 2: Another view

Coin Address
cm sn Public key
Coin Commitment Serial number Olpk
) «— g Secret key
commit PseudoRandom PseudoRandom
T k Function Uk Function
v commit [/
value
Ol p | Serial number
Public address randomness

Acknowledgements

* This paper presentation is part of COMP6111C:Blockchain and Cryptocurrency Technologies in
2017 Fall at HKUST, taught by Prof. Dimitris Papadopoulos

The slides are prepared based on the sources listed below. The presenters would like to thank
the authors for making the information publicly available online.

E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, |. Miers, E. Tromer, and M. Virza. Zerocash: Decentralized anonymous payments from Bitcoin.
In IEEE Symposium on Security and Privacy, 2014

* E. Tromer. Information Security — Theory vs. Reality, 0368-4474-01, Winter 2015-2016, Lecture 12:Verified computation and its applications

"Zerocash: improving Bitcoin using SNARKs", YouTube, 2014. [Online]. Available: https://www.youtube.com/watch?v=S6q0i9ap6RM.
[Accessed: 16- Nov- 2017].

The slides have not been updated since then and some information may be outdated, if you
have any questions, please feel free to reach out to the original paper authors, or the
presenters gg35@cornell.edu, tzhang@g.harvard.edu

https://www.cse.ust.hk/~dipapado/
https://www.youtube.com/watch?v=S6qOj9ap6RM
mailto:gq35@cornell.edu
mailto:tzhang@g.harvard.edu

