
CS5112:
Algorithms and
Data Structures
for Applications

Guest lecture by Gengmo Qi
31 March 2021

Slides adopted from a variety of sources(see references)

CS5112: Algorithms and Data Structures for
Applications

This lecture

• 1. Classical Consensus Algorithms

• 2. Hash pointers and data structures

• 3. Nakamoto Consensus: Proof-of-work

Recall Paxos
• Consensus on one value

• Repeatedly: multi-Paxos
• Permissioned

• Membership management
• Propose-Vote paradigm
• Key argument:

• Majority of accepts means consensus has been reached
• Failure mode

• Handles fail-stops well
• What if ID=∞? -> Byzantine fault

• Tradeoff
• Never produces inconsistent result, but can (rarely) get stuck

Failure modes

Crash / Fail-stop Arbitrary failures

Byzantine faultSimple fault

Putting Paxos into context

Crash / Fail-stop Arbitrary failures

Byzantine faultSimple fault

Paxos

Classical Consensus

• Foundational theory: State Machine Replication
• Permissioned
• Solutions to the Byzantine Generals Problem:

• 80s: Early solutions by Leslie Lamport
• 90s-00s: PBFT provide high-performance solutions

Switching gears

Hash functions
Hash functions:

Takes any string as input
Map to fixed-size output(e.g. 256 bits)
Deterministic

Cryptographic Hash functions:
Collision-resistant
Hiding
Puzzle-friendly

Security Property 1: Collision-resistant

• It is hard to find x and y such that
x != y and H(x) = H(y)

x

y

H(x) = H(y)

Application: Hash as message digest

• If we know H(x) = H(y)
• Then it’s safe to assume that x=y

• Application: file integrity / comparison
• E.g. checksum

What does “hard to find” mean?

• Major topic, center of computational complexity
• Loosely speaking, we can’t absolutely prove this
• But we can show that if we could solve one problem, we could

solve another problem that is widely believed to be hard
• Because lots of people have tried to solve it and failed!

• This proves that one problem is at least as hard as another
• “reduction”

Security Property 2: Hiding

• Given H(x), it is infeasible to find x
• i.e. one-way

H(“heads”)

H(“tails”)

Security Property 2: Hiding

• Given H(x), it is infeasible to find x
• i.e. one-way

H(“heads”)

H(“tails”)

easy to find x!

Why?

Security Property 2: Hiding

If r is chosen from a probability distribution that has high min-
entropy, then given H(r | x), it is infeasible to find x.

H(r|“heads”)

H(r|“tails”)

Security Property 3: Puzzle-friendly

• Intuition: If you want to target a Hash function H to have a
particular output value y, and if part of the input (i.e., r) is
chosen in a suitably randomized fashion, then its very difficult to
find the other part of the input x to exactly hit the target output
value (y)

• Difficult: no strategy is better than just trying random values of x
(brute-force)

Hash Pointers and Data Structures

• Hash pointer:
• A pointer to where the data is stored, and
• Cryptographic hash of the data

With a hash pointer, we can
• ask to retrieve the data, and
• *verify that the data hasn’t been tampered with

Da
ta

Application: Hash chaining

<empty>

Da
ta

Da
ta

Hash<empty> 0xb0473a6b5475942eb67
c2b7e52ebf8…

Application: Hash chaining

Da
ta

Da
ta

Hash<empty> 0xb0473a6b5475942eb67
c2b7e52ebf8…

Application: Hash chaining

Da
ta

Da
ta

Hash<empty> Hash0xb0473a6b5475942eb67
c2b7e52ebf8…

0xc3892c361132be86eab
063d6cbe1e65a...

Application: Hash chaining

Da
ta

Da
ta

Hash<empty> Hash

Da
ta

0xb0473a6b5475942eb67
c2b7e52ebf8…

0xc3892c361132be86eab
063d6cbe1e65a...

Application: Hash chaining

Da
ta

Da
ta

Hash<empty> Hash

Da
ta

0xb0473a6b5475942eb67
c2b7e52ebf8…

0xc3892c361132be86eab
063d6cbe1e65a...

0x9f2e6d33a3717ee8263
53a404ba46…

Application: Hash chaining

Da
ta

Da
ta

Hash chaining: Detecting tampering

Hash<empty> Hash

Da
ta

0xb0473a6b5475942eb67
c2b7e52ebf8…

0xc3892c361132be86eab
063d6cbe1e65a...

0x9f2e6d33a3717ee8263
53a404ba46…

Da
ta

Da
ta

Hash chaining: Detecting tampering

Hash<empty> Hash

Da
ta

0x8fe3cdeb017b511b7ab
19a61244af...

0xc3892c361132be86eab
063d6cbe1e65a...

0x9f2e6d33a3717ee8263
53a404ba46…

Da
ta

Da
ta

Hash chaining: Detecting tampering

Hash<empty> Hash

Da
ta

0x8fe3cdeb017b511b7ab
19a61244af...

0xd0948ab3d55431a06e8
21ae82e9b...

0x9f2e6d33a3717ee8263
53a404ba46…

Da
ta

Da
ta

Hash chaining: Detecting tampering

Hash<empty> Hash

Da
ta

0x8fe3cdeb017b511b7ab
19a61244af...

0xd0948ab3d55431a06e8
21ae82e9b...

0x9f2e6d33a3717ee8263
53a404ba46…

0xf9dedb4fdcd379db137
1d3d3b…

Da
ta

Da
ta

Hash chaining: Detecting tampering

Hash<empty> Hash

Da
ta

0xb0473a6b5475942eb67
c2b7e52ebf8…

0xc3892c361132be86eab
063d6cbe1e65a...

0x9f2e6d33a3717ee8263
53a404ba46…

Linked List with Hash Pointers
Use Case: Tamper-evident log

H() H()

H() H()H() H()

H() H()H() H()H() H()H() H()

Merkle Trees

D0 D2 D3D1 D4 D6 D7D5

root hash

H() H()

H() H()H() H()

H() H()H() H()H() H()H() H()

Proving Membership in a Merkle Tree

D0 D2 D3D1 D4 D6 D7D5

root hash

H() H()

H() H()H() H()

H() H()H() H()H() H()H() H()

Proving Membership in a Merkle Tree

D0 D2 D3D1 D4 D6 D7D5

root hashHow do you prove D2 is in
the Merkle tree?

H() H()

H() H()H() H()

H() H()H() H()H() H()H() H()

Proving Membership in a Merkle Tree

D0 D2 D3D1 D4 D6 D7D5

root hashHow do you prove D2 is in
the Merkle tree?

T0

T1 T2

T3 T4 T5 T6

H() H()

H() H()H() H()

H() H()H() H()H() H()H() H()

Proving Membership in a Merkle Tree

D0 D2 D3D1 D4 D6 D7D5

root hashHow do you prove D2 is in
the Merkle tree?

Verify if T0 = H(H(T3 || H(D2 || D3)) || T2)
is true

T0

T1 T2

T3 T4 T5 T6

Merkle Trees

● Tree can hold many items

○ But only need to remember the root hash

○ Can verify membership in O(log n) time/space

Let’s build a global transactional system!

● Building blocks we now have:

○ Classical consensus algorithms: e.g. Paxos

○ Hash pointers and data structures

● Goal:

○ public, decentralized, permissionless

We want a peer-to-peer system

When Alice wants to pay Bob:
she broadcasts the transaction to all nodes

Pay 100 cc to Bob
signed by Alice

What nodes need to reach a consensus on?

● Which transactions were broadcast on the network
● Order in which these transactions occurred

àResult of the consensus protocol:
Single, global transaction ledger for the system

How consensus could work in this system?

At any given time (in the peer-to-peer network):
● All nodes have a sequence of blocks of transactions

they’ve reached consensus on
● Each node has a set of outstanding transactions it’s heard

about

How consensus could work in this system?

Tx
Tx
…
Tx

Tx
Tx
…
Tx

Tx
Tx
…
Tx

prev_hprev_h prev_h

At any given time (in the peer-to-peer network):
● All nodes have a sequence of blocks of transactions they’ve reached

consensus on

Tx
Tx
…
Tx

Tx
Tx
…
Tx

Tx
Tx
…
Tx

prev_hprev_h prev_h

At any given time (in the peer-to-peer network):
● All nodes have a sequence of blocks of transactions they’ve reached

consensus on
● Each node has a set of outstanding transactions it’s heard about

Tx
Tx
…
Tx

Tx
Tx
…
Tx

Tx
Tx
…
Tx

How consensus could work in this system?

Tx
Tx
…
Tx

Tx
Tx
…
Tx

Tx
Tx
…
Tx

Tx
Tx
…
Tx

Tx
Tx
…
Tx

Tx
Tx
…
Tx

Consensus
Algorithm

OK to select any valid block, even if proposed by only one node

prev_hprev_h prev_h

How consensus could work in this system?

Tx
Tx
…
Tx

OK to select any valid block, even if proposed by only one node

How consensus could work in this system?

Tx
Tx
…
Tx

Tx
Tx
…
Tx

Tx
Tx
…
Tx

prev_hprev_h prev_h

Tx
Tx
…
Tx

OK to select any valid block, even if proposed by only one node

prev_h

How consensus could work in this system?

Tx
Tx
…
Tx

Tx
Tx
…
Tx

Tx
Tx
…
Tx

prev_hprev_h prev_h

What Consensus algorithm to use?

Tx
Tx
…
Tx

Tx
Tx
…
Tx

Tx
Tx
…
Tx

Consensus
Algorithm

Tx
Tx
…
Tx

Tx
Tx
…
Tx

Tx
Tx
…
Tx

prev_hprev_h prev_h

What Consensus algorithm to use?

● Why not just use Paxos?
Tx
Tx
…
Tx

Tx
Tx
…
Tx

Tx
Tx
…
Tx

Consensus
Algorithm

Tx
Tx
…
Tx

Tx
Tx
…
Tx

Tx
Tx
…
Tx

prev_hprev_h prev_h

● Why not just use Paxos?

● We want to build a public, permissionless system
○ Membership is permissionless: Any machine can join and leave at any

time

○ 😈 Sybil attack: An attacker can spin up unlimited instances

● We are now designing in a different paradigm
○ Need a new consensus algorithm!

What Consensus algorithm to use?

Key idea: implicit consensus

1. In each round, a random node is picked
2. This node proposes the next block in the chain

○ No voting done!
3. Other nodes implicitly accept/reject this block

○ by either extending it

○ or ignoring it and extending chain from earlier block
4. Every block contains hash of the block it extends

Consensus algorithm (simplified)

1. New transactions are broadcast to all nodes
2. Each node collects new transactions into a block
3. In each round a random node gets to broadcast its block
4. Other nodes accept the block only if all transactions in it are valid
5. Nodes express their acceptance of the block by including its hash in

the next block they create

Now let’s analyze if this works!

Assume a malicious adversary.

Can this adversary subvert the implicit consensus process by:

1. Stealing funds?
2. Denial of service?
3. Double spend?

What can a malicious node do?

A → B

A → A’

Pay to Bob
signed by Alice

Pay to Alice’
signed by Alice

Double-
spending
attack

Assumption 1: Honest nodes will extend the longest valid branch
Assumption 2: The majority of nodes picked randomly are honest

From Bob the merchant’s point of view

A → B

A → A’

Hear about Alice → Bob transaction
0 confirmations

1 confirmation

double-spend
attempt

3 confirmations

Double-spend probability
decreases exponentially
with # of confirmations

Recap

● Protection against invalid transactions is cryptographic,
but enforced by consensus

● Protection against double-spending is purely by consensus

● You’re never 100% sure a transaction is in consensus branch. Guarantee is
probabilistic

● Assumptions:
● Honest nodes will extend the longest valid branch
● The majority of nodes picked randomly are honest

Assumption of honesty is problematic

Can we give nodes incentives for behaving honestly?

Can we penalize the node
that created this block?

Can we reward nodes
that created these blocks?

Incentives
● What’s in it for the honest block creators?

Alice owes Bob 100CC
Bob owes Charlie 80CC

Bob owes Deborah 30CC
Alice owes Charlie 500CC

Mike receives 50CC

Block creator gets to “collect” the reward only if the block ends up on long-term consensus branch

Remaining problems

1. How to pick a random node?

2. How to avoid a free-for-all due to rewards?

3. How to prevent Sybil attacks?

Proof of Work

To approximate selecting a random node:

select nodes in proportion to a resource that no one
can monopolize (we hope)

• In proportion to computing power: proof-of-work

Proof of Work

To create block, find nonce s.t.
H(nonce ǁ prev_hash ǁ tx ǁ … ǁ tx) is very small

If hash function is secure (puzzle-friendly):
only way to succeed is to try enough nonces until you get lucky

nonce
prev_h

Tx
Tx

Proof of Work

SHA-256 00011101010011100010
10000101001001001000
01010010100000011111
111100110….

N = 10

To create block, find nonce s.t.
H(nonce ǁ prev_hash ǁ tx ǁ … ǁ tx) is very small

nonce = 16784

prev_h

Tx

Tx

Proof of Work

SHA-256 01110100111111111111
11110010100000010101
11010100000010100101
0

N = 10

To create block, find nonce s.t.
H(nonce ǁ prev_hash ǁ tx ǁ … ǁ tx) is very small

nonce = 45625

prev_h

Tx

Tx

Proof of Work

SHA-256 00000000000011100101
11101010100101010000
00101011101010000001
01001010….

N = 10

To create block, find nonce s.t.
H(nonce ǁ prev_hash ǁ tx ǁ … ǁ tx) is very small

nonce = 37212

prev_h

Tx

Tx

Proof of Work

To create block, find nonce s.t.
H(nonce ǁ prev_hash ǁ tx ǁ … ǁ tx) < target

Output space of hash

Target
space

If hash function is secure:
only way to succeed is to try enough nonces until you get lucky

nonce
prev_h

Tx
Tx

Equivalent views of Proof of Work

1. Select nodes in proportion to computing power

2. Let nodes compete for right to create block

3. Make it moderately hard to create new identities

Key assumption: Honest majority

Attacks infeasible if majority of miners weighted by hash power
follow the protocol (or are honest)

This will ensure a more than 50% chance that the next block is
proposed by an honest node

What’s different about Nakamoto consensus?

● Introduces economics and incentives
● Embraces randomness

If you are interested in the topic

Related Courses at Cornell
● CS 5433 Blockchains, Cryptocurrencies, and Smart Contracts

Prof. Ari Juels

● CS 5854 Networks and Markets
Prof. Rafael Pass

● CS 5435 Computer Security
Prof. Vitaly Shmatikov / Prof. Thomas Ristenpart

References

Slides adopted from:

● Narayanan, Bonneau, Felten, Miller, & Goldfeder. (2016). Bitcoin and Cryptocurrency
Technologies.

http://bitcoinbook.cs.princeton.edu/

● Shi. (2020). Foundations of Distributed Consensus and Blockchains.
https://www.distributedconsensus.net/

● Colohan. (2016). Distributed Systems.
http://www.distributedsystemscourse.com/

● Böhme. (2019). A Primer on Economics for Cryptocurrencies.
https://bdlt.school/

http://bitcoinbook.cs.princeton.edu/
https://www.distributedconsensus.net/
http://www.distributedsystemscourse.com/
https://bdlt.school/

